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Abstract-Visual observations by Lloyd and Sparrow [l] and Sparrow and Husar [2] have indicated 
that the instability of the boundary layer on a heated, inclined plate is predominated by two-dimensional 
waves for angles of inclination less than i4”, whereas both waves and longitudinal vortices are observed 
for angles of 14-17”. and vortices predominate for larger angles. A linear stability analysis is carried 
out in this paper. It is found that each mode becomes unstable first at the same location along the 
plate at an angle of only 4”. However, correlation with the experimental observations is achieved by 
calculating the total amplification of each disturbance from the predicted point of onset of instability 

to the point of observed instability for various angles of inclination. 

NOMENCLATURE vo7 kinematic viscosity; 
gravitational constant; x0, thermal diffusivity; 
characteristic velocity in flow direction 2’; /% non-dimensional wavenumber in z direction; 
vertical component of perturbation velocity; cli, spatial growth rate of travelling disturbances; 
dimensional distance along plate; XI, non-dimensional wavenumber in x direction; 
point of observed instability; 2, complex wavenumber, 2,. + ixi ; 
point of theoretical instability; (3. dimensional frequency [Hz] ; 
dimensionless distance along plate, Z/S; (0, non-dimensional frequency of travelling wave; 
dimensional coordinate normal to plate, out- 0, jnclinatjon angle of plate from vertical; 
wards; “2 i. spatiai growth rate of spanwise periodic dis- 
dimensional coordinate spanwise on plate; turbances; 
dimensionless coordinate spanwise on plate; 1, dimensional wavelength. 
Grashof number based on 1, (aOgAT@$; 
Grashof number based on boundary layer 
thickness, 6; WTRODUCTION 

effective Grashof number, Grs tan 0; BUOYANCY driven flows are of common occurrence 
critical effective Grashof number: in technological,atmospheric, and oceanic phenomena, 
Prandtl number, v~/K~; the buoyancy stratification being achieved often by the 

Rayieigh number based on .?; temperature field. The stability of such flows therefore 
Rayleigh number at point of observed in- has considerable importance. This paper is concerned 
stability IO; with the stability of flows over heated inclined surfaces 

Reynolds number based on boundary layer located in an otherwise homogeneous medium. 

thickness, 6; Many previous investigations have been concerned 

critical Reynolds number; with the stability of flows over heated vertical plates. 

basic flow velocity profile; As shown by Polymeropoulous and Gebhart [3], 
basic temperature profile; excellent correlations exist for this case between ex- 
wall temperature; perimental results and theoretical predictions based on 
ambient temperature; the parallel basic Aow assumption. The instability for 
perturbation temperature. a vertical plate case occurs in the form of two- 

Greek symbols 
dimensional waves travelling in the streamwise direc- 
tion. When the plate is inclined, however, another 

6, boundary layer thickness, ,/%/(Gr,? cos 6)“14; mode of instability is possible which manifests itself in 

V, similarity variable, y/6; the form of stationary longitudinal vortices, periodic 

Q* coefficient of voiume expansion; in the spanwise direction. This mode of instability 
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arises due to the destabilizing influence of the buoyancy 
component normal to the inclined surface and is 
analogous to the GGrtler vortices observed for flows 
over isothermal concave surfaces and caused by cen- 
trifugal forces (see Gartler [4], Hlmmerlin [5]. and 
Tani [6]). The analogy between centrifugal forces and 
buoyancy forces in causing instability was first dis- 
cussed by Gartler [7]. Experiments by Sparrow and 
Husar [2] and by Lloyd and Sparrow [l] have in- 
dicated that an angle of tilt exists for which the 
longitudinal mode of instability becomes predominant. 
Working with a speciaI dye-generation technique. for 
easy visual observations ofthe instability. they observed 
that when the angle of tilt was about 17‘ from the 
vertical, longitudinal vortices predominated the flow 
field, whereas for angles less than 14”, two-dimensional. 
travelling waves were predominant. No theoretical in- 
vestigation has been done to date to correlate the 
resultsoflinear stability theory with these experimental 
results, and this is the aim of the present paper. Only 
the above-mentioned form of disturbances were con- 
sidered because these were the experimentally observed 
disturbances. We use a linear stability theory, assuming 
a parallel basic flow and a Boussinesq tfuid with a 
Prandtl number of 6.7 (this Prandtl number being 
chosen in order to compare with the expe~ment~~l data 
for water used by Lloyd and Sparrow [l]). The eigen- 
value problem has been solved for both neutrally stable 
and spatially growing disturbances for various angles 
of inclination. 

various angles in order to estimate the total ampli- 
fication of each disturbance over a given interval in 2, 
and, as discussed in more detail below, to use this as 
a basis for comparison of theoretical and experimental 
results. 

One way of defining the angle of modal transition 
is to find that angle at which both modes of instability 
begin to grow at the same point along the plate. For 
this criterion, only the neutral stahility curve is re- 
quired. However, such a result can only be compared 
meaningfully to data from an experiment in which 
truly small. controlled disturbances can be detected, 
such as in the work of Polym~ropoulos and Gebhart 
[3]. This does not seem to be true in the experiments 
by Lloyd and Sparrow [ 11, in which visual observations 
of natural disturbances were made by use of a dye- 
technique. For instance, the Kayleigh number for the 
vertical case at which instability was first observed was 
given as O(10”) in their Table 1. whereas the critical 
value given by the theoretical analysis of Nachtsheim 
[S] is 0(105) for a Prandtl number of 6.7. This con- 
sideration becomes even more important for the present 
case, for which the spatial amplification of the travelling 
waves beyond the point of instability at the angle, as 
defined above. is significantly larger than that for 
longitudinal vortices. Hence, one can conceive of a 
situation inwhich the longitudin~~l vortices might begin 
to grow first, but for which the tlow pattern further 
downstream would be dominated by the travelling 
waves. Growth rates were therefore calculated for 

ANALYSIS 

The system under consideration is shown in Fig. I. 
A fluid of kinematic viscosity I’~, thermal diffusivity t\‘o, 
and coefficient of volume expansion ao, occupies the 
region j > 0 bounded by a semi-infinite inclined wall 
at _i: = 0. The wall temperature T?+, is greater than the 
temper~~ture of the ambient fluid I;,. giving rise to a 

free-convection boundary layer flow. The angle of tilt 
measured from the vertical is 0, so that the streamwise 
component of gravity driving the flow is gcos 0. The 

similarity solutions for the basic velocity and tem- 
perature fields have been given by Ostrach [9] for a 
variety of Prandtl numbers for 0 = 0 Numerical solu- 
tions for a Prandtl number 6.7 and 0 = 0’ have been 
given by Nachtsheim [8]. These solutions for the basic 
flow can be used for inclined plates as well, as shown 
by Kierkus [lo], provided that the boundary layer 
scaling factor for the J-coordinate, 6. incorporates the 
effective gravitational constant and is defined as 
ci = V‘ ~.?.:(GQ ~0s If)' ", where GQ is a Grashof number 
based on .Y. that (Gr; cos O)‘,4 is sufficiently large (>> 1) 
so that higher order boundary layer corrections are 
negligible, and finally that tan Q/(Gr, cos 0)“” is suffi- 

ciently small so that the cross-stream buoyancy force 
can be ignored in the basic How. If (G~~cos~))“~ >> I. 
the last requirement is certainly valid for tan0 of 
order unity and so will be met for the angles (0 s 17’) 
of primary interest here. We will assume that the 
boundary layer solutions of Nachtsheim [S] can be 
used with sufficient accuracy in the following analysis 
and will discuss the validity of this assumption later in 
the light of our stability results. 

A linear stability analysis is used to study the stability 
of the boundary layer to two-dimensional traveliing 

FIG. I. The flow configuration. 
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waves periodic in the streamwise direction (2) and to The spanwise periodic stationary disturbances will 
stationary disturbances periodic in the spanwise direc- now be considered. The derivation of the stability 
tion (2). A Boussinesq fluid is considered, and the equations is similar to those for travelling waves. For 
parallel flow assumption is made in the following a disturbance of the form 
analysis. The travelling waves will be investigated first. 

The linear dimensionless stability equations for a 
t” = c(q) exp[i/Iz + yx], (9) 

vertical plate have been derived by Nachtsheim [8], the linear stability equations are 

and the derivation for an inclined plate is very similar. 
We use the following characteristic quantities in order 

(D2-~2+~2-;‘Grd~)(D2-~2+;.2)C: 

to place the linear stability equations in non- 
= i’D~-.JGrBU”~-(~*-_/jZ)~tanO (10) 

dimensional form: and 

length: &(Gri cos (I)‘.‘4 = 6. (1) 
(D2-f12+y2 -Gr,Pruy)f = ?T’Gr*Pr, (11) 

velocity : 2v0(GrV cos (I)‘!‘/: = ic, (2) with the same boundary conditions as given in (8). /J’ is 

temperature: T&TO=AT, (3) real and represents a wavenumber in the spanwise 
direction, and y > 0 represents the spatial growth rate 

where of these disturbances. The disturbance as expressed 

Gr< = (~gATd~)/v& (4) 
above is non-oscillatory in time. Computer calculations 
were also done retaining frequency as a parameter, 

Tabulations of the mean flow u(q) and temperature 
and it was found that the frequency is indeed zero 

distribution T(s) are given in Table 1 of Nachtsheim 
within the numerical accuracy expected (i.e. of order 

[8] in terms of the similarity variable 9 = J/;/s. 
10-H). 

Assuming a vertical velocity and temperature dis- 
To distinguish between the two modes of instability, 

turbance of the form 
we associate the Reynolds number with the travelling 
wave mode and the Grashof number with the vortex 

u’ = v*(q)exp[i(~.u-tot)]. (5a) mode, although both are equal. 

T’ = p(q) exp[i(ax -wt)], (5b) 

we can derive through use of the momentum, con- METHOD OF SOLUTION 

tinuity and energy equations, the governing stability The stability equations for the travelling waves and 

equations as stationary disturbances constitute in effect a sixth order 
differential equation with three boundary conditions 

(D2-u2-iaR+[U-w/a])(D2-a2)t: at each end of the range of integration (0 < q < cc). 

= ia tan 0% ixU”Re$- Df (6) For travelling waves, the three independent solutions 

and 
which satisfy the condition of decay, equation S(b), as 
q tends to infinity behave like exp[iill] where i has 

- 
(D2-z2-inRe,Pr[U-o/a]) T = -iaT’RebPrd, (7) 

a positive imaginary part and satisfies the asymptotic 
form of the equations (6) and (7) for large q (u + 0, 

where n’ + 0. T’ -+ 0), giving rise to the relation 

Re8 = Gr6 = (rr,gATa3 cos ())lv$ (i2 + r2)(3.2 + g2 - icoRrd)(i2 + x2 - icoRedPr) = 0. (12) 

and 
If we associate i.l, j.,, A3 with the values of i with 

positive imaginary parts obtained by solving the follow- 
D = d/d?, i;i = u(q), T= T(q). ing equations, 

The boundary conditions are 
i.:+Xz = 0, (13a) 

i.: + a2 - iwRca = 0, (13b) 

;=Djj=f=O at II = 0, @a) ;: + 2 - itoRedPr = 0, (13c) 

c=Dfi=F=O as n-x. (8b) three linearly independent solutions can be obtained 

Primes on basic flow quantities indicate derivatives 
by using the following starting conditions for large ye 

with respect to n. The frequency of the disturbance t;r = e’“‘“, c2 = eil2rl. 

is w, and c( is the complex wavenumber, the real part a, 
representing the wavenumber and the imaginary part xi 

c3 = eij.3q [(ia tan (I- iA3)/ 

representing the spatial growth rate (ai > 0 for decay 
(j.: +x2)(;.: +x2 - icoRed)], (14a) 

and Xi < 0 for growth). FI = 0 p2 = 0 F3 ZY &s (14b) 
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where the constant multiplying 63 is obtained from 
equation (6) for large y. For fixed values of wave- 
number, angle of tilt, growth rates and an assumed 
Re;, and w, the integration is performed using Gill’s 
modification of the fourth order Runge-Kutta method 
marching in from a large value of n to the wall (q = 0). 

A value of about 8.0 was found to be sufficiently large 
so as to represent effectively “infinity”. (i.e. the results 
did not vary when larger values of q were used). A step 
size of 0.1 was used for the integration. Double pre- 
cision arithmetic was used on an IBM 360/91 computer. 
The linear independence of the solutions was ensured 
by Gram-Schmidt orthonormalisation at every 10 steps 
of integration. The three solutions (&, pIi,, ($2, fz), and 

(i&, F3) were then combined at the wall using two 
arbitrary constants A and B as follows 

DC; = DC*1 + A(I&) + B(DS,), 

f= T,+AS;+@~. 

Wb) 

(15c) 

The constants A and B were then evaluated to satisfy 
the wall conditions, C(O), LX(O). The third boundary 
condition at the wall, p(O) = 0, was satisfied by con- 

verging on the right eigenvalues Red and W. A Newton- 
Raphson iteration technique was used to converge on 
the right eigenvalues. Excellent agreement was obtained 
for the vertical case ((I = 0) with the results of 

Nactsheim [8] for transverse travelling waves. 
For the case of longitudinal vortices, a similar pro- 

cedure was followed, except that one must account for 
the repeated roots which arise from the equation 
analogous to equation (12). As a check of the method 
of solution. we verified Hammerlin’s [S] result for the 
analogous case of centrifugal instability on a concave 
surface. 

FIG. 3. Neutral curves for travelling disturbances as a func- 
tion of inclination angle 0 for the case of stable strafification. 

RESULTS AND DISCUSSION 
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FIG. 2. Neutral curves for traveliing disturbances as a 
function of inclination angle 0. 

Prondtl number = 6. 7 
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6 
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wavelength 
I 

Figure 2 shows the destabilizing effect on the tilt 
angle on the neutral curve for travelling waves. This 

5 *, 

effect is not just due to the COS”‘~H but represents the E 
destabilizing influence of the additional energy pro- z ,o_ 
vided to the disturbance through the buoyancy term ‘5 
in the momentum equation for the vertical disturbance Z$ 
component. The critical Reynolds number Re, is a w 
function of (1, ReaC((?). and decreases as 0 increases, 

Y’O 
-.,.--- 

with a corres~nding increase in critical wavenumber. 
For the flow on the underside of the plate, where stable ‘0.0, 

1 t I Illall I t 8 s /Ill1 I 8 i I!(! 
0.1 I IO 

stratification occurs, the results shown in Fig. 3 show Spanwlse periodic wave number, p 

that Red< tends to increase in a Similar manner with 0. FIG. 4. Neutral carve and curves of constant spatial growth 
with a corresponding decrease in critical wavenumber. rate for longitudinal vortices for 0 = 9.2”. 
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Figure 4 shows the neutral curve and curves of constant 

spatial growth rates for spanwise periodic disturbances, 
as functions of wavenumber /3 and the effective Grashof 
number for thermal instability &a = Gra tan 0, for a 
tilt angie of 9.2” from the vertical. Only the neutral 
curve is independent of 0. The curve asymptotes 
towards a spanwise wavenumber of zero, a result 
analogous to that of HPmmerlin [5] for the case of 
Gktler vortices, and the critical effective Grashof 
number 6r4 equals 2.15. Since Gr4 is independent of 
0, and Grd is constant as 0 increases only if k decreases, 

it can be seen that as the plate is inclined away from 
the vertical, the point along the plate at which the 
longitudinal disturbances first become unstable moves 

towards the leading edge and at some angle, OX, be- 
comes equa1 to the point at which the travelling waves 
first become unstable. For 0 > BE, the longitudinal 
disturbances become unstable first. This angle can be 
obtained from the equation 

tan 0 = 2.15!Re,(0), (16) 

remembering that Gr6 = Res. by use of the results 
given in Fig. 2 for Req(0). 

When this is done, the angle ON for transition from 
the travelling mode to the longitudinal mode is found 
to be only 4 , a value rather low when compared to 
the experimentally observed value of approximately 
17 ‘. However. the critical Grashof number occurs for 
low wavenumber longitudinal disturb~lnces which then 
grow very slowly along the plate. In contrast, the 
travelling waves can grow more rapidly and thereby 
dominate the flow within a short distance of the point 
of instability, thus becoming visible first. A more 
realistic test of the theory therefore arises from cal- 
culating the total amplification of each mode from the 
point of onset of instability to the point of observed 

instability and to see which mode predominates. If the 
amplitudes are comparable for an angle of approxi- 
mately 17 , the use of linear stability theory is meaning- 
ful and consistent with the experimental results. The 
amplitude ratios for the disturbances as a function of .Y 
are given by 

for travelling disturbances and 

for stationary longitudinal vortices. 

Figures 5 and 6 show the neutral curves and curves 
of constant spatial growth rates for B = 16” for travel- 
ling disturbances and stationary vortices, respectively. 
Similar curves were obtained for U = 9.2” (Figs. 7 and 
4). Superimposed on these are lines of constant dimen- 

Lines of constant dimensional frequercy 

i 
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\\ \ 
(c)C b)(o) 

IO / I>//1!/1 1 1 I//,/,l / ‘_Ji,i, 

0 01 01 l-0 IO 

Dimefwonless frequency, w 

FIG. 5. Neutral curve and curves of constant spatial growth 
rate for travelling waves for 0 = 16”. 

sional frequency in Fig. 5 and lines of constant 
dimensional wavelength in Fig. 6, which indicate the 
path followed by such disturbances as they progress 
into the boundary layer. The amplitude ratios as a 
function of P were then calculated by integration along 
these lines using equations (17) and (18). Such calcula- 
tions are meaningful in view of the observations of 
Lloyd and Sparrow, who found more or less regularly 
spaced lines paraflei to the streamwise direction, in- 
dicating that the dimensional wavelength remains 
constant with .V. Similar observations were made by 
Tani [6] for the case of Gijrtter vortices. The results 

1000 
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‘(3 ! i_ines of constant dimens!onal 

wovelenpth 
I \ 

FIG. 6. Neutral curve and curves of constant spatial growth 
rate for iong~tudinal disturbances for 0 = 16’. 
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FIG. 7. Neutral curve and curves of constant spatial growth 
rate for travelling waves for 0 = 9.2”. 

of the integration are plotted in Fig. 8 for fi = 9.2’ and 
in Fig. 9 for 0 = 16” as a function of Rayleigh Number 
R~.i based on 1, for the disturbance which achieves 
the largest amplitude ratio at the location along the 
plate at which disturbances were observed. The dis- 
tance from the leading edge at which the disturbances 

were observed, .VO, was obtained from the mean 
Rayleigh numbers reported by Lloyd and Sparrow [I], 

assuming a Prandtl number of 6.7. Their Fig. 1 
suggests that the curve of Rayleigh number for observed 

instability versus angle of inclination is reasonably 
insensitive to Prandtl number variations. It is clear 
from Fig. 8 that for 0 = 9.2“ the travelling waves achieve 
an amplitude ratio IA2/AII = 51.0 which is about 9.0 
times larger than the ratio jAliAlj = 5.7 for longi- 
tudinal disturbances. both evaluated at the observed 
point of instability Ra,-,, = 4.8 x IO”. The travelling 

waves consequently still predominate the observed 
instability. For ii = 16 (Fig. 9). the travelling waves 
achieve an amplitude ratio 1.42,‘A ,/ = 43.5 compared 
to 28.0 for longitudinal disturbances at the observed 
point of instability Rail, = 3.3 x 10”. Thus the ratios 
differ by only a factor of 1.5. The values can be 
considered to be close, especially when we consider 
the 25 per cent standard deviations from the mean 

Rayleigh numbers reported by Lloyd and Sparrow. For 
0 = 35 ‘, the results shown in Fig. 10 indicate that the 
longitudinal disturbances achieve an amplitude ratio 
about 6 times the amplitude ratio achieved by the 
travelling waves at the observed point of instability. 

The IongitLldinai vortices will conscqucntty prcdomin- 
ate the observed instability. The results for 0 = 35 . 
however, should be interpreted with caution. because, 
as discussed later. the parallel flow assumption is in 
question for this high inclination angic. 

The theoretical results. based on the parallcl flow 
assumption and linear stability theory therefore appear 
to yield results which are quite consistent with the 

experimental results. at least as far as predicting the 
predominant mode at a given angle of inclination is 
concerned. However. they also indicate that a definition 

FIG. 8. Amplitude ratios as a function of Rui for 0 = 9.2 for travclling waves and 
longitudinal vortices. 
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Rayleigh number, RuY 

FIG. 9. Amplitude ratios as a function of Rtrc for 0 = 16 for travelling waves 
and longitudinal vortices. 

Longitudinal 
vortex 

Trovelling Wave 

Rayleigh number, Ro; 

FIG. 10. Amplitude ratio as a function of Rup for 0 = 35 for longitudinal vortices. 

of an angle of transition between modes is rather that the dimensional frequency and wavelength are 

nebulous from an experimental viewpoint. depending given by the relations 

strongly upon the experimentalist’s ability to detect 
small disturbances and disturbance amplitudes which (3 = E [r,i15!!$O’r12;3 (GrS)1/3V0 (19) 

are of concern. 
The dimensional frequencies and wavelengths re- and 

ported in the figures have been calculated for AT = 
28°C and for physical properties of the fluid cor- 
responding to a Prandtl number of 6.7. It can be shown 
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The data on the observed wavelength of longitudinal 
vortices is very meager. Sparrow and Husar reported 
that the number of dye lines observed (distance between 
two dye lines being equivalent to a wavelength) for a 
fixed angle B = 35” increased from 30 to 42 as AT was 
increased from 9” to 28°C. On a spanwise width of 
20cm, this represents a wavelength of 0,475 cm for 
R = 35” and AT = 28°C. The distance from the leading 
edge at which the instability was observed, deduced 
from the mean Rayleigh numbers reported by Lloyd 
and Sparrow, is equal to 4.6cm for AT = 28”C, and 
corresponds to a Rayleigh number Ra,:, = 4.2 x 10’. 
Figure 10 shows the amplitude ratios for the most 
amplified longitudinal disturbances for 0 = 35” as func- 
tion of Rayleigh number Ru, : The wavelengths of these 
disturbances vary between 0~48cm and 0.68 cm, the 
curves corresponding to these wavelengths being found 
to be very close to each other. This represents reason- 
able correlation with experiments, considering the 
assumptions of the theory. 

The parallel flow assumption made in the above 
analysis will be reviewed in light of the stability results. 
The values of the expansion parameter (Gr< cos 0)-l’” 
used in the perturbation analysis of Kierkus [lo] is 
given in Table 1 for various angles of inclination for 
both modes of instability, It can be seen that for 
travelling waves the value of (CQ cos (I)- I!’ is of the 
order of 0.1 or less for the whole range from .V1 to &. 
Since the non-parallel flow terms are of this order, it 
seems reasonable to neglect these terms in preference 
to the convective parallel flow terms which are of order 
unity. For longitudinal vortices, however. the non- 

Table 1. Expansion parameter (Gr; cos O)- ’ ’ as 3 

function of 0 and .?, for AT = 2X C 
.?t = point of theoretical instability 
lo = point of observed instability 

~. -- __ -- ---- ~~ --- 

Travelling Longitudinal 
waves vortices 

fi = 0 iI = 16 0 = 16‘ 0 = 35 
.._~~_ 

.?r cm 0.65 0.5 0.25 0.074 
(Gr~,cos(~)-“4 0.087 0.105 0.2 0.47 

.fo cm 10.34 9.15 9.15 4.6 

(Gf.i,cOSO)-“4 0.0109 0.0 122 0.0122 0.021 
-- 

parallel flow terms become important especially near 
1r and, for 0 = 35, the assumption is particularly bad. 
Also near ,?i and hence near the neutral curve the 
growth rates are of order (Grp cos II)- ‘I4 or less, and 
the stability analysis should be modified to include the 
non-parallel flow terms in order to define the neutral 
stability point. The value of Grq might then occur for 
a non-zero wavenumber. The reasonably successful 
correlation of theoretical and observed wavelengths at 
0 = 35”, reported earlier, was presumably obtained by 
computing over an interval for which the parallel flow 
assumption becomes increasingly more valid. 

Acittlor~ledyrmPnr-This work has been supported by the 
National Science Foundation through Grant GA-31247 and 
by the U.S. Army Research Office-Durham. 

1 

2 

9 _, 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

REFERENCES 

J. R. Lloyd and E. M. Sparrow. On the jnstability of 
natural convection flow on inclined plates, f. F/uiil Me&. 
42,465-470 (1970). 
E. M. Sparrow and R. B. Husar. Longit,.tdinat vortices 
in natural convection flow on inclined plates, J. Fluid 
Mrch. 37, 251-255 (1969). 
C. E. Polymeropoulos and B. Gebhart. Incipient in- 
stability in free -convection laminar boundary layers, 
.J. Fhiil Mwh. 30. 2755239 (1967). 
H. Giirtler. On the three dimensional instability of 
laminar boundary layers on concave walls, NACA TM 
1375 (1954). 
G. Hammerlin. Uber das Eigenwertproblem der drei- 
dimcnsionalen instabilitat laminarer Grenzschichten an 
Konkaven Wanden. J. Rcri. Mec,k. ii& 4, 2799321 
(1955). 
1. Tani. Production of ion&itudin~il vortices in the 
boundary layers along a concave wail. J. Gcophys. Rrs. 
67.30753080 (1962). 
H. Gortler. Uher einc Analogie Zwischen den instabili- 
taten laminarer Grenzschichtstromungcn an Konkaven 
Wanden tmd an cnwarmten Wanden. Ing. Arch. 38. 
71m 78 (1959). 
P. R. N~lchtsheim, Stability of free convection boundary 
layer flows, NASA TN-D-2089 (1963). 
S. Ostrach. An analysis of laminar free convection 
flow and heat transfer about a Rat plate parallel to the 
direction of the generating body force, NACA Rep. 111 I 
(1953). 
W. T. Kicrkus, An analysis of laminar free convection 
flow and heat transfer about an inclined isothermal plate, 
fnt. J. Heat Mass Trmsfrt Il. 241-253 (1968). 



Laminar free convection flow 525 

STABILITE DE LA CONVECTION LAMINAIRE NATURELLE 
INDUITE PAR UNE PLAQUE CHAUFFEE ET INCLINEE 

Resume-Des visualisations realisees par Lloyd et Sparrow [l] et Sparrow et Husar [2] ont montre 
que l’instabilite de la couche Iimite sur une plaque chauffke et inclinke est marquke par des ondes 
bidimensionnelles pour des angles d’inclinaison inferieurs a 14’, par des ondes et des tourbillons 
longitudinaux entre 14 et 17’. tandis que les tourtJlons predominent pour les angles plus grands. On 
developpe dans cet article une analyse de stabilite iineaire. On trouve que chaque mode devient instable 
au meme endroit sur la plaque pour un angle de 4 seulement. Neanmoins on obtient un accord avec 
les observations experimentales en calculant l’amplification totale de chaque perturbation depuis le point 
calcule du declanchement de l’instabilite jusqu’au point d’instabilitt observe. pour difftrents angles 

d’inclinaison. 

DIE STABILITAT EINER LAMINAREN FREIEN KONVEKTIONSTRtSMUNG 
AN EINER GEHEIZTEN, GENEIGTEN PLATTE 

Zusammenfassung-Opt&he Beobachtungen durch Lloyd und Sparrow [l] und Sparrow und Husar [2] 
haben gezeigt, daB die Instabilitat der Grenzschicht an einer geheizten, geneigten Platte iiberwiegend 
durch zweidimensionale Wellen fur Neigungswinkel kleiner als, 14” auftritt. Daher werden sowohl 
Wellen als such Langswirbel fir Winkel zwischen 14 und 17” beobachtet, wlhrend fiir grol3ere Winkel 
Wirbel vorherrschen. Eine lineare Stabilitatsuntersuchung ist angegeben, Es zeigt sich, da13 jede Kon- 
figuration an der gleichen Stelle der Platte bei einem Winkel von nur 4” instabil wird. Eine Korrelation 
der Versuchsergebnisse wird erreicht durch Berechnung der Gesamtausbreitung jeder Stromung von der 

vorhergesagten zur beobachteten Stiirstelle bei verschiedenen Neigungswinkeln. 

YCTOti’IMBOCTb JIAMMHAPHOFO TEYEHMR IIPM CBOSOflHOii KOHBEKUMH 
HA HAFPETOH HAKJIOHHOI? HJIACTMHE 

AuHoTauuR - BH3yajIbHble Ha6nKUIeHH9, npOBeneHHble nJlOi%inOM I4 Cn3ppOy [I], Cn3ppOy II 

Xy3apOM [2], nOKa3a.JIA. ‘IT0 HeyCTOfiWBOCTb flOrpaHMYHOr0 CnOR Ha HarpeTOfi HaKnOHHOfi WIaCTllH‘? 

06yCJIaISIMBaeTCn DByMepHblMM BOnHaMA IIpH yrnaX HaKJlOHa MeHbUle 14”. &ISl yrJIOB 14-17” 

Ha6JIIO~a~TC~ KaK BOnHbl, TPK M npOnOnbHble BMXpM, a npki 6onbmkfx yrJlax npeo6nanatoT FWXpH. 

B L,aHHOti pa6oTe BblnOJlHeH ,IMHedHblfi aHanM3 yCTO+IHBOCTl4. HaRneHo, VT0 KamnaR Mona CTBHO- 

BMTCIl nepBOHaYaJIbH0 HCyCTOfiYMBOfi B OLlHOfi H TOfi )Kc TOYKe Ha nnaCTr(He TOnbKO npM yrne 4”. 
COOTBeTCTBMe C 3KCnepMMeHTaJIbHblMH Ha6nmneHunMu DOCTMrHyTO IIyTsM paC’i&Ta o6wero ycme- 
HMIl KamnOrO BO3MyL”eHMSl OT pa&THOti TO’fKM B03HMKHOBeHMR HeyCTOfiWBOCTM IlO TOVKM Ha6nto- 

flaeMoti HeyCTOiGlMBOCTM npki pa3JlWIHblX yrnax HaKnOHa. 


