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Abstract— Visual observations by Lloyd and Sparrow [1] and Sparrow and Husar [2] have indicated
that the instability of the boundary layer on a heated, inclined plate is predominated by two-dimensional
waves for angles of inclination less than 14°, whereas both waves and longitudinal vortices are observed
for angles of 14°-17°, and vortices predominate for larger angles. A linear stability analysis is carried
out in this paper. It is found that each mode becomes unstable first at the same location along the
plate at an angle of only 4°. However, correlation with the experimental observations is achieved by
calculating the total amplification of each disturbance from the predicted point of onset of instability
to the point of observed instability for various angles of inclination.

NOMENCLATURE
g, gravitational constant;
i, characteristic velocity in flow direction X;
v, vertical component of perturbation velocity;
X, dimensional distance along plate;
KXo, point of observed instability;
X, point of theoretical instability;
X, dimensionless distance along plate, %/5;
A dimensional coordinate normal to plate, out-
wards;
Z, dimensional coordinate spanwise on plate;
z, dimensionless coordinate spanwise on plate;
Gre,  Grashof number based on X, (xogAT %/v3);
Grs,  Grashof number based on boundary layer
thickness, §;
Grs,  effective Grashof number, Grstan 0;
Grs,  critical effective Grashof number:

Pr, Prandtl number, vo/xo:

Ra;, Rayleigh number based on ¥;

Rag,, Rayleigh number at point of observed in-
stability X

Res,  Reynolds number based on boundary layer
thickness, &;

Res,,  critical Reynolds number;

U, basic flow velocity profile;

T basic temperature profile;

T, wall temperature;

To, ambient temperature;

T perturbation temperature.

Greek symbols

8, boundary layer thickness, \/Ei/(Gri. cos §)14,
#, similarity variable, y/3;
T coefficient of volume expansion;

Vo, kinematic viscosity;
Ko, thermal diffusivity;
B, non-dimensional wavenumber in z direction;
%, spatial growth rate of travelling disturbances;
Ay, non-dimensional wavenumber in x direction;
a, complex wavenumber, x, + ia; ;
a, dimensional frequency [Hz];
o, non-dimensional frequency of travelling wave;
a, inclination angle of plate from vertical;
% spatial growth rate of spanwise periodic dis-

turbances;
7 dimensional wavelength.

INTRODUCTION

Buoyancy driven flows are of common occurrence
in technological, atmospheric, and oceanic phenomena,
the buoyancy stratification being achieved often by the
temperature field. The stability of such flows therefore
has considerable importance. This paper is concerned
with the stability of flows over heated inclined surfaces
located in an otherwise homiogeneous medium.

Many previous investigations have been concerned
with the stability of flows over heated vertical plates.
As shown by Polymeropoulous and Gebhart [3],
excellent correlations exist for this case between ex-
perimental results and theoretical predictions based on
the parallel basic flow assumption. The instability for
a vertical plate case occurs in the form of two-
dimensional waves travelling in the streamwise direc-
tion. When the plate is inclined, however, another
mode of instability is possible which manifests itself in
the form of stationary longitudinal vortices, periodic
in the spanwise direction. This mode of instability
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arises due to the destabilizing influence of the buoyancy
component normal to the inclined surface and is
analogous to the Gartler vortices observed for flows
over isothermal concave surfaces and caused by cen-
trifugal forces (see Gortler [4], Himmerlin [5], and
Tani [6]). The analogy between centrifugal forces and
buoyancy forces in causing instability was first dis-
cussed by Gortler [7]. Experiments by Sparrow and
Husar [2] and by Lloyd and Sparrow [1] have in-
dicated that an angle of tilt exists for which the
longitudinal mode of instability becomes predominant.
Working with a special dye-generation technique, for
easy visual observations of the instability, they observed
that when the angle of tit was about 17° from the
vertical, longitudinal vortices predominated the flow
field, whereas for angles less than 147, two-dimensional,
travelling waves were predominant. No theoretical in-
vestigation has been done to date to correlate the
results of linear stability theory with these experimental
results, and this is the aim of the present paper. Only
the above-mentioned form of disturbances were con-
sidered because these were the experimentally observed
disturbances. We use a linear stability theory, assuming
a paralle] basic flow and a Boussinesq fluid with a
Prandtl number of 67 (this Prandtl number being
chosen in order to compare with the experimental data
for water used by Lloyd and Sparrow [1]). The eigen-
value problem has been solved for both neutrally stable
and spatially growing disturbances for various angles
of inclination.

One way of defining the angle of modal transition
is to find that angle at which both modes of instability
begin to grow at the same point along the plate. For
this criterion, only the neutral stability curve is re-
quired. However, such a result can only be compared
meaningfully to data from an experiment in which
truly small, controlled disturbances can be detected,
such as in the work of Polymeropoulos and Gebhart
[3]. This does not seem to be true in the experiments
by Lioyd and Sparrow [ 1], in which visual observations
of natural disturbances were made by use of a dye-
technique. For instance, the Rayleigh number for the
vertical case at which instability was first observed was
given as 0(10°) in their Table 1, whereas the critical
value given by the theoretical analysis of Nachtsheim
[8] is 0(10%) for a Prandtl number of 67. This con-
sideration becomes even more important for the present
case, for which the spatial amplification of the travelling
waves beyond the point of instability at the angle, as
defined above, is significantly larger than that for
longitudinal vortices. Hence, one can conceive of a
situation in which the longitudinal vortices might begin
to grow first, but for which the flow pattern further
downstream would be dominated by the travelling
waves. Growth rates were therefore calculated for

various angles in order to estimate the total ampli-
fication of each disturbance over a given interval in ¥,
and, as discussed in more detail below, to use this as
a basis for comparison of theoretical and experimental
results.

ANALYSIS

The system under consideration is shown in Fig. 1.
A fluid of kinernatic viscosity vo. thermal diffusivity wo,
and coefficient of volume expansion ag, occupies the
region § > 0 bounded by a semi-infinite inclined wall
at ¥ = 0. The wall temperature Ty is greater than the
temperature of the ambient fluid Ty, giving rise 10 a
free-convection boundary layer flow. The angle of tilt
measured from the vertical is 0, so that the streamwise
component of gravity driving the flow is gcos(, The
similarity solutions for the basic velocity and tem-
perature fields have been given by Ostrach [9] for a
variety of Prandtl numbers for # = 0". Numerical solu-
tions for a Prandtl number 67 and () = 0” have been
given by Nachtsheim [8]. These solutions for the basic
flow can be used for inclined plates as well, as shown
by Kierkus [10], provided that the boundary layer
scaling factor for the y-coordinate, 8, incorporates the
effective gravitational constant and is defined as
& = \/2¥1(Gr; cos )%, where Gr is a Grashof number
based on X. that (Gr; cos )" is sufficiently large (> 1)
so that higher order boundary layer corrections are
negligible, and finally that tan 8/(Gr,cos 0)V* is suffi-
ciently small so that the cross-stream buoyancy force
can be ignored in the basic Alow. If (Grycos ()14 > 1,
the last requirement is certainly valid for tan() of
order unity and so will be met for the angles (# = 177)
of primary interest here. We will assume that the
boundary layer solutions of Nachtsheim [8] can be
used with sufficient accuracy in the following analysis
and will discuss the validity of this assumption later in
the light of our stability results.

A linear stability analysis is used to study the stability
of the boundary layer to two-dimensional travelling

FiG. 1. The flow configuration.
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waves periodic in the streamwise direction (%) and to
stationary disturbances periodic in the spanwise direc-
tion (Z). A Boussinesq fluid is considered, and the
parallel flow assumption is made in the following
analysis. The travelling waves will be investigated first.

The linear dimensionless stability equations for a
vertical plate have been derived by Nachtsheim [8],
and the derivation for an inclined plate is very similar.
We use the following characteristic quantities in order
to place the linear stability equations in non-
dimensional form:

length: VFZ,\Z/(Gr,; cosH* = §, (1)
velocity: 2vo(Gre cos 0)12/5% = i, (2)
temperature: Ty — Ty = AT, (3)

where
Gri: = (xogATZ3)/v3. (4)

Tabulations of the mean flow U(n) and temperature
distribution T(y) are given in Table 1 of Nachtsheim
[8] in terms of the similarity variable # = /3.

Assuming a vertical velocity and temperature dis-
turbance of the form

(5a)
(5b)

v' = d(n) explilax —wi)],
T' = Ty exp[ilax —wt)],
we can derive through use of the momentum, con-
tinuity and energy equations, the governing stability
equations as
(D*—o? —iaRe;s[ U —w/a])(D? — a?)b
= iatan 0T —ixU"Re;t — DT, (6)

and

(D? —a? —iaResPr[U~w/a) T= —iaT'ResPrd,  (7)

where
Res = Gry = (aogAT$> cos 0)/vE
and
D=d/idy, U=Uw), T=TH).
The boundary conditions are
f=D=T=0 at n=0, (8a)
{=Db=T=0 as n— . (8b)

Primes on basic flow quantities indicate derivatives
with respect to #. The frequency of the disturbance
is w, and o is the complex wavenumber, the real part o,
representing the wavenumber and the imaginary part o;
representing the spatial growth rate (a; > 0 for decay
and «; < 0 for growth).
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The spanwise periodic stationary disturbances will
now be considered. The derivation of the stability
equations is similar to those for travelling waves. For
a disturbance of the form

v = B(n)exp[ifz+yx], 9)
the linear stability equations are
(D= B2 +52 —yGrsU)D? = B +37)8
= DT —7Grs U6 — (32— ) Ttan0 (10)
and

(D*— B> +77 = GrsPrUy)T = 8T'GrsPr,  (11)

with the same boundary conditions as given in (8). § is
real and represents a wavenumber in the spanwise
direction, and 7 > 0 represents the spatial growth rate
of these disturbances. The disturbance as expressed
aboveis non-oscillatory in time. Computer calculations
were also done retaining frequency as a parameter,
and it was found that the frequency is indeed zero
within the numerical accuracy expected (i.e. of order
1079),

To distinguish between the two modes of instability,
we associate the Reynolds number with the travelling
wave mode and the Grashof number with the vortex
mode, although both are equal.

METHOD OF SOLUTION

The stability equations for the travelling waves and
stationary disturbances constitute in effect a sixth order
differential equation with three boundary conditions
at each end of the range of integration (0 €< 5 < ).
For travelling waves, the three independent solutions
which satisfy the condition of decay, equation 8(b), as
1 tends to infinity behave like exp[idy] where 4 has
a positive imaginary part and satisfies the asymptotic
form of the equations (6) and (7) for large n (U—0,
U -0, T'— 0), giving rise to the relation
(A2 4+ B (A2 4+ a2 —iwRes) (23 + 22 —iwRes Pr) = 0. (12)

If we associate Ay, 4,, A3 with the values of i with

positive imaginary parts obtained by solving the follow-
ing equations,

MAtat=0, (13a)
J3+a?—iwRes =0, (13b)
i3+ a2 —iwResPr =0, (13c)

three linearly independent solutions can be obtained
by using the following starting conditions for large n

131 = e““”, ﬁz = CMZ”.
3 = e[ (i tan 0 — id3)/
(23 +27) (A3 + 22 —iwRes)], (l4a)

Ti=0, T,=0 T)=¢" (14b)
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where the constant multiplying ; is obtained from
equation (6} for large . For fixed values of wave-
number, angle of tilt, growth rates and an assumed
Res and w, the integration is performed using Gill’s
modification of the fourth order Runge-Kutta method
marching in from a large value of # to the wall (4 = 0).
A value of about 8-0 was found to be sufficiently large
so as to represent effectively “infinity”. (i.e. the results
did not vary when larger values of # were used). A step
size of 01 was used for the integration, Double pre-
cision arithmetic was used on an IBM 360/91 computer.
The linear independence of the solutions was ensured
by Gram-Schmidt orthonormalisation atevery 10 steps
of integration. The three solutions (8;, Ty}, (2, T3), and
{3, T3) were then combined at the wall using two
arbitrary constants A and B as follows

t= 1?1+A132+3133, (15a)
Db = Dby + A(DE;) + B(D{5), (15b)
T=T+ATy+BT. (15¢c)

The constants A4 and B were then evaluated to satisfy
the wall conditions, 0(0), D&({0). The third boundary
condition at the wall, T{0) = 0, was satisfied by con-
verging on the right eigenvalues Re; and . A Newton—
Raphson iteration technique was used to converge on
the right eigenvalues. Excellent agreement was obtained
for the vertical case (0 =0) with the results of
Nactsheim [8] for transverse travelling waves.

For the case of longitudinal vortices, a similar pro-
cedure was followed, except that one must account for
the repeated roots which arise from the equation
analogous to equation (12). As a check of the method
of solution, we verified Hammerlin’s [5] result for the
analogous case of centrifugal instability on a concave
surface.

RESULTS AND DISCUSSION

Figure 2 shows the destabilizing effect on the tilt
angle on the neutral curve for travelling waves. This
effect is not just due to the cos'/* 6 but represents the
destabilizing influence of the additional energy pro-
vided to the disturbance through the buoyancy term
in the momentum equation for the vertical disturbance
component. The critical Reynolds number Re, is a
function of 0, Re; (), and decreases as { increases,
with a corresponding increase in critical wavenumber.
For the flow on the underside of the plate, where stable
stratification occurs, the results shown in Fig. 3 show
that Re; tends to increase in a similar manner with 0,
with a corresponding decrease in critical wavenumber.
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Figure 4 shows the neutral curve and curves of constant
spatial growth rates for spanwise periodic disturbances,
as functions of wavenumber f and the effective Grashof
number for thermal instability Gr; = Grstan6, for a
tilt angle of 9-2° from the vertical. Only the neutral
curve is independent of #. The curve asymptotes
towards a spanwise wavenumber of zero, a result
analogous to that of Himmerlin [5] for the case of
Gortler vortices, and the critical effective Grashof
number Gr,, equals 2:15. Since Gr,, is independent of
6, and Gr,is constant as 6 increases only if ¥ decreases,
it can be seen that as the plate is inclined away from
the vertical, the point along the plate at which the
longitudinal disturbances first become unstable moves
towards the leading edge and at some angle, 0y, be-
comes equal to the point at which the travelling waves
first become unstable. For § > fy, the longitudinal
disturbances become unstable first. This angle can be
obtained from the equation

tan 0 = 2:15/Re; (0), (16)

remembering that Grs; = Re;. by use of the results
given in Fig. 2 for Re; (0).

When this is done, the angle Oy for transition from
the travelling mode to the longitudinal mode is found
to be only 47, a value rather low when compared to
the experimentally observed value of approximately
17°. However, the critical Grashof number occurs for
low wavenumber longitudinal disturbances which then
grow very slowly along the plate. In contrast, the
travelling waves can grow more rapidly and thereby
dominate the flow within a short distance of the point
of instability, thus becoming visible first. A more
realistic test of the theory therefore arises from cal-
culating the total amplification of each mode from the
point of onset of instability to the point of observed
instability and to see which mode predominates. If the
amplitudes are comparable for an angle of approxi-
mately 17°, the use of linear stability theory is meaning-
ful and consistent with the experimental results. The
amplitude ratios for the disturbances as a function of x
are given by

Rey,
éé—z B exp[lf (—Xi)dR()g} f]?)
4, 3 e,
for travelling disturbances and
-t
Ay exp 3tant Grs 7T

(18)

for stationary longitudinal vortices.

Figures 5 and 6 show the neutral curves and curves
of constant spatial growth rates for 8 = 16° for travel-
ling disturbances and stationary vortices, respectively.
Similar curves were obtained for 6 = 9-2° (Figs. 7 and
4). Superimposed on these are lines of constant dimen-
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sional frequency in Fig. 5 and lines of constant
dimensional wavelength in Fig. 6, which indicate the
path followed by such disturbances as they progress
into the boundary layer. The amplitude ratios as a
function of X were then calculated by integration along
these lines using equations (17) and (18). Such calcula-
tions are meaningful in view of the observations of
Lioyd and Sparrow, who found more or less regularly
spaced lines parallel to the streamwise direction, in-
dicating that the dimensional wavelength remains
constant with X Similar observations were made by
Tani [6] for the case of Gortler vortices. The results
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of the integration are plotted in Fig. 8 for ¢ = 92" and
in Fig. 9 for 0 = 167 as a function of Rayleigh Number
Ra; based on %, for the disturbance which achieves
the largest amplitude ratio at the location along the
plate at which disturbances were observed. The dis-
tance from the leading edge at which the disturbances
were observed, %,, was obtained from the mean
Rayleigh numbers reported by Lloyd and Sparrow [ 1],
assuming a Prandtl number of 67. Their Fig. !
suggests that the curve of Rayleigh number for observed
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instability versus angle of inclination is reasonably
insensitive to Prandtl number variations. It is clear
from Fig. 8 that for # = 9-2" the travelling waves achieve
an amplitude ratio |A4,/4] = 51-0 which is about 9-0
times larger than the ratio {4>/4,|= 57 for longi-
tudinal disturbances, both evaluated at the observed
point of instability Rag, = 48 x 10%. The travelling
waves consequently still predominate the observed
instability. For 0 = 16" (Fig. 9). the travelling waves
achieve an amplitude ratio [4,/4] = 43-5 compared
to 280 for longitudinal disturbances at the observed
point of instability Rag, = 3-3 x 10", Thus the ratios
differ by only a factor of 1-5. The values can be
considered to be close, especially when we consider
the 25 per cent standard deviations from the mean
Rayleigh numbers reported by Lioyd and Sparrow. For
() = 357, the results shown in Fig. 10 indicate that the
longitudinal disturbances achieve an amplitude ratio
about 6 times the amplitude ratio achieved by the
travelling waves at the observed point of instability.
The longitudinal vortices will consequently predomin-
ate the observed instability, The results for ¢ =35,
however, should be interpreted with caution. because,
as discussed later, the parallel flow assumption is in
question for this high inclination angle.

The theoretical results. based on the parallel flow
assumption and linear stability theory therefore appear
to yield results which are quite consistent with the
experimental results. at least as far as predicting the
predominant mode at a given angle of inclination is
concerned. However, they also indicate that a definition
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of an angle of transition between modes is rather that the dimensional frequency and wavelength are
nebulous from an experimental viewpoint, depending  given by the relations
strongly upon the experimentalist’s ability to detect s
small disturbances and disturbance amplitudes which 0 = L"l: ,,,,, } (Grs) v, (19)
are of concern. 2r v§

The dimensional frequencies and wavelengths re- 454
ported in the figures have been calculated for AT =
28°C and for physical properties of the fluid cor- ,':2771[
responding to a Prandtl number of 6-7. It can be shown B

(Grstan 0)'2.  (20)

oogAT sin ():| - L3
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The data on the observed wavelength of longitudinal
vortices is very meager. Sparrow and Husar reported
that the number of dye lines observed (distance between
two dye lines being equivalent to a wavelength) for a
fixed angle 6 = 35° increased from 30 to 42 as AT was
increased from 9° to 28°C. On a spanwise width of
20cm, this represents a wavelength of 0-475cm for
# = 35°and AT = 28°C. The distance from the leading
edge at which the instability was observed, deduced
from the mean Rayleigh numbers reported by Lloyd
and Sparrow, is equal to 4-6cm for AT = 28°C, and
corresponds to a Rayleigh number Ra, = 42 x 107,
Figure 10 shows the amplitude ratios for the most
amplified longitudinal disturbances for § = 35° as func-
tion of Rayleigh number Ra;: The wavelengths of these
disturbances vary between 0:48cm and 0-68 cm, the
curves corresponding to these wavelengths being found
to be very close to each other. This represents reason-
able correlation with experiments, considering the
assumptions of the theory.

The parallel flow assumption made in the above
analysis will be reviewed in light of the stability results.
The values of the expansion parameter (Gr; cos ()™ 1/
used in the perturbation analysis of Kierkus [10] is
given in Table 1 for various angles of inclination for
both modes of instability. It can be seen that for
travelling waves the value of (Grycos )™ V* is of the
order of O'1 or less for the whole range from %, to %,.
Since the non-parallel flow terms are of this order, it
seems reasonable to neglect these terms in preference
to the convective parallel flow terms which are of order
unity. For longitudinal vortices, however, the non-

Table 1. Expansion parameter (Grycos ) ' asa
function of ¢ and X, for AT = 28°C
Xy = point of theoretical instability
%o = point of observed instability

Longitudinal

Travelling
waves vortices
0=0" O=16" (=16 =35
X;cm 065 05 0-25 0074
(Gre,cos )14 0087 0-105 02 0-47
Xgcm 10-34 915 915 4-6
(Grsoeos 14 00109 00122 00122 0021

P. A.Iver and R. E. KELLY

parallel flow terms become important especially near
%4 and, for 0 = 357, the assumption is particularly bad.
Also near X; and hence near the neutral curve the
growth rates are of order (Gr;cos0)™* or less, and
the stability analysis should be modified to include the
non-parallel flow terms in order to define the neutral
stability point. The value of Grs might then occur for
a non-zero wavenumber. The reasonably successful
correlation of theoretical and observed wavelengths at
6 = 35° reported earlier, was presumably obtained by
computing over an interval for which the parallel flow
assumption becomes increasingly more valid.
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Laminar free convection flow

STABILITE DE LA CONVECTION LAMINAIRE NATURELLE
INDUITE PAR UNE PLAQUE CHAUFFEE ET INCLINEE

Résumé—Des visualisations réalisées par Lloyd et Sparrow [1] et Sparrow et Husar [2] ont montré
que l'instabilit¢ de la couche limite sur une plaque chauffée et inclinée est marquée par des ondes
bidimensionnelles pour des angles d'inclinaison inférieurs a 14°, par des ondes et des tourbillons
longitudinaux entre 14 et 17°, tandis que les tourtillons prédominent pour les angles plus grands. On
développe dans cet article une analyse de stabilité linéaire. On trouve que chaque mode devient instable
au méme endroit sur la plaque pour un angle de 4" seulement. Néanmoins on obtient un accord avec
les observations expérimentales en calculant 'amplification totale de chaque perturbation depuis le point
calculé du déclanchement de I'instabilité jusqu'au point d’instabilité observé, pour différents angles
d’inclinaison.

DIE STABILITAT EINER LAMINAREN FREIEN KONVEKTIONSTROMUNG
AN EINER GEHEIZTEN, GENEIGTEN PLATTE

Zusammenfassung — Optische Beobachtungen durch Lloyd und Sparrow [1] und Sparrow und Husar [2]
haben gezeigt, da} die Instabilitdt der Grenzschicht an einer geheizten, geneigten Platte iiberwiegend
durch zweidimensionale Wellen fiir Neigungswinkel kleiner als, 14° auftritt. Daher werden sowohl
Wellen als auch Lidngswirbel fiir Winkel zwischen 14 und 17° beobachtet, wihrend fiir groBere Winkel
Wirbel vorherrschen. Eine lineare Stabilitdtsuntersuchung ist angegeben, Es zeigt sich, daB jede Kon-
figuration an der gleichen Stelle der Platte bei einem Winkel von nur 4° instabil wird. Fine Korrelation
der Versuchsergebnisse wird erreicht durch Berechnung der Gesamtausbreitung jeder Strémung von der
vorhergesagten zur beobachteten Storstelle bei verschiedenen Neigungswinkeln.

YCTOMYUBOCTh TAMUHAPHOI'O TEYEHUSA T1PM CBOBOJHOW KOHBEKLIV
HA HATPETON HAKJIOHHOHW ITJIACTUHE

AnHoTauug — BuiyanbHble HaOmnioneHus, npoBeneHHsie Jlnoidiaom u Cmppoy (1], Cmppoy u
Xy3apom [2], noka3anu, YTo HEYCTOHYUBOCTb MOTPAHUYHOTO CJIOSl Ha HAarpeTOH HAKNOHHOM ITacTHHE
ofycnaBnuBaeTCs ABYMEPHBIMH BOJIHAMM IIPH YIriax HakjioHa meHbwie 14°. Jdnas yrnos 14-17°
HADTI0Aa10TCS KaK BOJIHbI, TaK U MPOAOJbHbIE BUXPH, a TPU OONbLUMX YI/1ax NpeodianaloT BHXPH.
B naunoit paboTe BLIMOTHEH JIMHEHHbIA aHAU3 YCTOHYMBOCTH. Haligeno, 4To Kaxmas mMoaa CTaHo-
BATCA MEPBOHAYATBLHO HEYCTOHYUBON B OAHOW M TOH ke TOYKE HA INIACTHHE TOJILKO TpH yrie 4°,
COOTBETCTBHE C IKCMIEPUMEHTANIbHBIMH HAOAIOAEHUAMH AOCTUTHYTO MyTEM pacuéTa obLIEro ycuie-
HHS KaXZ0TO BO3IMYLUEHUS OT pacy€THOM TOYKM BOIHUKHOBEHHUS HEYCTOMHYMBOCTH /10 TOYKM Habo-
NaeMOil HEYCTOHYMBOCTH MPH pa3/iMyHbIX YIN1ax HAKJIOHA.
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